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Parameters influencing diffusion dynamics of an adsorbed polymer chain
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Brownian dynamics simulations with hydrodynamic interaction (HI) are performed to study the effect of
chain length on the diffusion of a polymer chain adsorbed onto flat surfaces. Bead-rod as well as bead-spring
chains, with Hookean and finitely extensible nonlinear elastic (FENE) springs, are used to model the polymer
chain, and the no-slip boundary condition for the solvent is incorporated exactly. Simulations for short chains
(N=<100) predict that the translational diffusivity in the planar direction D~ N7, where N is the chain length,
with »=~0.75 for bead-rod chains and bead-spring chains connected by stiff FENE springs and v=~1 for
bead-spring chains connected by flexible FENE and Hookean springs. We find that near chemically homoge-
neous surfaces, the scaling exponent v depends upon three factors: chain flexibility, strength of HI, and solvent
quality. The v value changes from 0.75 to 1 with either an increase in chain flexibility, a decrease in the
strength of HI, or a decrease in solvent quality. However, near a chemically heterogeneous surface, v is always

1.
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Adsorbed polymers arise in practical applications involv-
ing thin polymeric films and polymeric nanocomposites
[1,2]. Also, visualization experiments are performed by bind-
ing polymer molecules onto flat surfaces [3]. Understanding
the dynamics of adsorbed polymer molecules is thus of great
interest. Experimental studies suggest that for a polymer
chain adsorbed onto a lipid bilayer, the translational diffusiv-
ity in the planar direction D;~N~!, where N is the chain
length [2-5]. On the other hand, Sukhishvili er al. found that
Dy~ N3 for a polymer chain adsorbed onto a monolayer
surface of condensed octadecyltriethoxysilane [6,7]. The
physics that controls these scalings remains an active area of
research.

Molecular simulations have proven valuable in addressing
this issue. Two-dimensional (2D) molecular dynamics (MD)
simulations with explicit solvent initially suggested a break-
down of dynamical scaling [8], but later it was found that
dynamical scaling holds when finite-size effects are properly
accounted for [9]. In this case, it is observed that D, scales
logarithmically with N; i.e., the effective scaling exponent is
zero. Both 2D MD simulations without explicit solvent and
2D Monte Carlo simulations suggest that when a surface is
decorated by impenetrable obstacles, D;~ N~>'? at higher ob-
stacle number density, whereas D;~N~! at lower obstacle
number density [10,11]. Recent 3D dissipative particle dy-
namics simulations yield scalings consistent with these re-
sults [12]. Mukherji et al. performed 3D MD simulations
with implicit solvent and without hydrodynamic interaction
(HI) and reported that D;~N=>? for a polymer chain ad-
sorbed onto an atomically corrugated surface in good solvent
[13]. Also, the diffusion dynamics was found to depend upon
chain length, strength of the polymer-surface interaction, and
solvent quality [13]. In the 3D studies described above, the
surface was physically heterogeneous; i.e., the surface was
either modeled by discrete atoms or was decorated with ob-
stacles. Desai et al. performed 3D MD simulations with ex-
plicit solvent of a polymer chain adsorbed onto a physically
homogeneous surface (ideally flat) [5]. It was reported that
D;~N=3* for a chemically homogeneous surface, whereas
D~ N~! for a chemically heterogeneous surface.
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In all of these 3D simulation studies, the no-slip boundary
condition for the solvent at the adsorbing surface is not in-
corporated exactly (see, e.g., Ref. [14]), leaving ambiguous
its role in controlling the scaling of the diffusivity. In this
article, we perform Brownian dynamics (BD) simulations
with HI to study the dynamics of an adsorbed polymer chain.
Our simulations incorporate the no-slip boundary condition
for the solvent exactly by using an analytical expression for
the velocity field, which is obtained by solving the Stokes
equation with no-slip boundary conditions. The simulations
are also used to probe the roles of chain flexibility, strength
of HI, and solvent quality in controlling the diffusivity scal-
ings.

We have previously used BD simulations with HI to study
the adsorption of a polyelectrolyte molecule onto uniformly
charged and charged patterned surfaces in a simple shear
flow [15,16]. In our model, the surface is located at z=0 and
the polymer chain remains above the surface. The computa-
tional domain extends infinitely in the x, y, and z directions.
Both bead-rod and bead-spring models are adopted to de-
scribe a polymer chain. In both models, the polymer chain is
represented by N beads connected through N—1 connectors
(either springs or rods). A force balance on each of the beads
yields the following stochastic differential equation (dimen-
sionless) in the case of bead-spring chains:

old J [y
r=r’"+ u+D-F+(9 -D |dt+\2B - dw, (1)
r

where r is the 3N-dimensional vector of new bead positions,
r° is the vector of bead positions at the old time step, and u
is the unperturbed solvent velocity. The non-Brownian non-
hydrodynamic force is given by F, dt is the time step used in
the simulation, and D=B-BT is the diffusivity tensor, whose
dimensions are 3N X 3N. The random displacement vector
dw has a Gaussian distribution with zero mean and variance
dt. In the case of the bead-rod model, the corresponding

stochastic differential equation is much more complicated; it
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as well as the simulation algorithm can be found in Refs.
[15,17,18].

The diffusivity tensor D has 3 X3 block components D,
which are given by

l]’

D;=Q;+5,1 (2)

=
where 1 is the identity tensor, &;; is the Kronecker delta, and
the HI tensor (hereupon referred to as the mobility tensor)
Q,(r;,r;) relates the velocity perturbation at r; to a point
force at r;. We express €;; as [15,19]

Qi' = (1 - )QOB(r ) + Qw(rz’ ]) (3)

l’j

where Q%(r;,r;) is the Oseen-Burgers mobility tensor and
Q%(r r;, j) is a correction that accounts for the no-slip condi-
tion at a solid wall. In order to account for the finite bead-
size in the simulations, Q%8(r;,r r;) is replaced by the Rotne-

Prager-Yamakawa tensor [20,21] and Q"(r;,r)) is taken as

Qw(rl’ ) Q (rl7 j) _Qw(rl’ j) (4)

where Q(r;, r;) is the mobility tensor for Stokes flow due
to a point force near a solid wall, the second term on the
right-hand side is a correction term that accounts for finite
bead size, and a is the hydrodynamic radius of the bead. The
expressions for QPF(r r;) and € Y(r;,r;) are given in Ap-
pendix B of Ref. [15].

The non-Brownian nonhydrodynamic forces on the ith
bead are

[ 2aau i l’]

F,=F’ +F“+F}, (5)

where Ff:FS(Q,-)—FS(Q,-_l) is the spring force and
Q;=r;,;—r;. In this study, we use both finitely extensible
nonlinear elastic (FENE) and Hookean springs. The repul-
sive part of a Lennard-Jones potential, F , accounts for
excluded-volume interactions. As in our previous studies
[15,16], bead-surface interactions F}’, which confine the
polymer chain to the surface, are modeled using a Lennard-
Jones potential.

A time step of 10~ is used in the simulations (the length
and time scales used for nondimensionalization are given in
the caption of Fig. 1). The properties of interest are obtained
by averaging over the 24 different trajectories analyzed for a
given set of parameters. Initial configurations corresponding
to a Gaussian distribution of end-to-end distances are gener-
ated. A chain sampled from this distribution is placed at a
distance z=2.5 above the surface, and we simulate the mo-
tion of a chain for 100-200 times the longest Rouse relax-
ation time. Runs were conducted on an IBM Bladecenter
using a parallelized version of the code. To ensure that the
chain remains adsorbed, we use an attractive potential of
15kgT, where kg is Boltzmann’s constant and T is the abso-
lute temperature. For this potential value, the perpendicular
component of the radius of gyration is less than 5% of the
parallel component R,, suggesting that the chain takes a
pancakelike conformation. In order to study the dynamics of
an adsorbed chain, we report D;. A 2D analog of the
Einstein-Smoluchowski equation is used for calculating D
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FIG. 1. Dependence of Dy on N. For bead-rod chains, the di-
mensionless excluded-volume diameter d,,=0.8 and a=0.5, where
the rod length / is used as the length scale. Note that decreasing d,,
decreases the range of excluded-volume repulsion; hence, this pa-
rameter controls the solvent quality. In the case of bead-spring
chains, VkgT/H is used as the length scale for nondimensionaliza-
tion, where H is the spring constant. We use {/?/k,T as the time
scale for nondimensionalization. For the KG model, we use
a=d,,/2=0.72 and b=HQ(2)/kBT=4.67, where Q is the maximum
spring extension. We use a=0.5 and d,,=0.8 in the cases of both
Hookean and FENE springs and 5=56.25 in the case of FENE
springs.
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D, = {(Ar*(1))/4t, (6)

where the mean-square displacement of the center of mass of
a chain, Ar%(z), is given by

(AP(0) =[x 1+ 7) =10 (DT, (7

where r, is the center of mass of the chain and 7is the time
origin. The set of outer brackets denotes averaging over dif-
ferent time origins and the ensemble.

The effect of chain length on the diffusion of a polymer
chain adsorbed onto a chemically homogeneous flat surface
(hereupon referred to as smooth surface) is probed for a
bead-rod chain and bead-spring chains connected by FENE
or Hookean springs. We note that these results are for rela-
tively short chains, as our computational resources only al-
lowed investigation of values of N=< 100. For FENE springs,
in one of the cases we use parameters similar to those used
by Kremer and Grest [22] (KG model). Figure 1 shows the
variation in D; with N. We found that in all the cases,
Ry ~N"7 as adsorbed chains perform a 2D self-avoiding
random walk [23]. For bead-rod chains and the KG model,
Dy~N"5. According to the Stokes-Einstein formula,
Dy~ 1/R,, which implies that D~ N7 since Rg|‘~N0'75.
The above results are thus consistent with the hydrodynam-
ics of a sphere with hydrodynamic radius R, translating par-
allel to a planar surface [24], suggesting that HI is important;
i.e., friction on the beads is correlated. On the other hand,
D~ N~! for flexible FENE and Hookean springs, suggesting
that friction on different segments of a polymer chain is un-
correlated. In order to understand the reasons for this depen-
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dence, we systematically probed the effects of chain flexibil-
ity b; strength of HI a; and solvent quality d,,.

Figure 2 shows the dependence of D on N at different b,
a, and d,, values. It is clear from Fig. 2(a) that at small b,
D~ N7, while at higher b, D;,~N~!, suggesting that HI is
unimportant for flexible chains (higher 5 values). This is
consistent with the notion that friction on different segments
of a polymer chain is uncorrelated (HI is screened) in more
flexible chains since beads are freer to move about. We also
found that the scaling exponent changes from 0.75 to 1 with
a decrease in a [cf. Fig. 2(b)]. It is noteworthy that the
strength of HI is given by ({/ n)VH/ (367 ksT)(*a) [25],
where £ is the friction coefficient and 7, is the solvent vis-
cosity. Since the HI strength weakens with a decrease in a,
the correlation between friction on different segments of a
polymer chain also weakens as a consequence. Figure 2(c)
suggests that even a decrease in d,, causes the scaling expo-
nent to change from 0.75 to 1. A decrease in d,, corresponds
to a decrease in solvent quality. In poor solvent conditions,
beads are freer to move closer to each other, reducing the
correlation of friction on different segments of a polymer
chain. Mukherji et al. also reported that polymer diffusivity
near an atomically corrugated surface shows a stronger de-
pendence on N under poor solvent conditions [13]. The
above results suggest that both chain and solution properties
affect the dynamics of a chain adsorbed onto a smooth sur-
face.

To verify the above power-law dependence, we calculated
the relaxation time of the end-to-end distance vector of an
adsorbed chain, 75, and R,. Table 1 shows the chain length
dependence of 7, Ry and Dy at different b, a, and d,, val-
ues. The relaxation time follows three different scaling laws
depending upon the values of b, a, and d,,. In all cases,
except for d,,=0.8, Ry ~ N7 as an adsorbed chain performs
a 2D self-avoiding random walk under good solvent condi-

100

50 100 nected by FENE springs (a) when
b=4.67 and 225 and a=d,,/2
=0.72, (b) when a=0.72 and 0.25,
b=4.67, and d,,=1.44, and (c)
when d,,=1.8 and 0.8, b=4.67,
and a=0.9.

tions (higher d,,). For d,,=0.8, a polymer chain forms a 2D
globular structure (disklike); hence, Ry~ N [23]. In Table
I, the chain length dependence of D, is evaluated using the
relation DH~R§H/TR [5]. Clearly, in all cases the N depen-
dence of Dy listed in Table I and obtained independently
from simulations (Fig. 2) is the same.

We also probed the scaling exponent near a chemically
heterogeneous flat surface. In order to model bead-surface
interaction near such a surface, we use the following poten-
tial [5]:

Ulx,y,z) = Usmomh(z){l + A cos(%)cos(?)} , (8)

where U(x,y,z) and U,,,,;(z) are potentials near a chemi-
cally heterogeneous and smooth surface, respectively. The
parameters A and g control the amplitude and wavelength of
heterogeneity, and (x,y,z) is the bead coordinate. Figure 3
shows that Dy~N~! for both the KG model and flexible
FENE springs. This scaling is consistent with the fact that in
the simulations, 7z ~N>> and Ry~ N®">. The same scaling
holds even at different A and ¢ values. There is a higher
probability of finding polymer segments in regions of stron-
ger surface attraction, and the polymer segments resist mov-
ing to regions with weaker surface attraction. So surface fric-
tion is more dominant than HI near a chemically
heterogeneous surface relative to a smooth surface. Hence
the friction coefficient shows a stronger dependence on chain
length.

In summary, our simulation results, which incorporate the
no-slip boundary condition for the solvent exactly, suggest
that both chain and solution properties affect the dynamics of
a polymer chain adsorbed onto a flat surface. BD simulations
predict that Dy~ N~", where v can take two different values
near a chemically homogeneous surface. We find that v
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TABLE L. Chain length dependence of 7z, Ry, and Dy at differ-
ent b values for a=d,,/2=0.72, at different a values for b=4.67 and
d,,=1.44, and at different d,, values for b=4.67 and a=0.90.

Effect of b
b TR Rg” D” "’R;H/ TR
4.67 N2.25 NO75 N—0.75
225 N2.5 N0‘75 N—l
Effect of a
a TR Rg” DHNR;H/TR
0.25 NZ.S N0‘75 N—l
0.72 N2‘25 N0‘75 N—0.75
Effect of d,,
dyy R Ry Dy~ R/ g
0.80 N? N3 N
1.80 N2.25 NO‘75 N—0.75

=0.75 if (i) the chain is stiff, (ii) the strength of HI is not
weak, and (iii) the solvent is good. In contrast, v is always 1
near a chemically heterogeneous surface. In experimental
studies on DNA diffusion near lipid bilayers, D;~N"!; our
simulations for a chemically heterogeneous surface were
able to reproduce this scaling. In experimental studies near
physically heterogeneous solid surfaces, D;~N=? is ob-
served and reptationlike arguments have been used to explain
this scaling. However, our simulation model at present can-
not be used to study diffusion near physically heterogeneous
surfaces; this will be a subject of future investigation. It
would also be useful to carry out simulations for larger val-
ues of N in order to determine whether the scaling exponents
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FIG. 3. Dependence of D on N near a chemically heterogeneous
surface, when A4=0.2 and g=1, in the case of the KG model and
FENE springs. The parameters used in the KG model are b=4.67
and a=d,,/2=0.72. For FENE springs, we use 5=56.25 and
a=d,,/2=04.

are different for sufficiently long chains. We expect that such
simulations will enable the design of surface chemistry and
topography to control the dynamics of confined polymers.
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